OMEGA-3 FATTY ACIDS, INFLAMMATORY STATUS AND BIOCHEMICAL MARKERS OF PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS: A PILOT STUDY

Background

- The main components of omega-3 are α-linolenic acid, EPA, and ΦHA. This can help reduce the prevalence of certain diseases like ΦM, CVΦ, and AMI. It also can control the production of CRP, proinflammatory cytokines (IL-6 and IL-10), chemokines, and adipokines (leptin and adiponectin)
 - SLE = systemic lupus erythematosus
 - Inflammatory autoimmune disease
 where the organs and tissue are
 targeted by immune cells. It can cause
 tissue damage.
 - In this study, the researchers focused on the relationship between omega-3 supplementation containing fish oils and women patients with SLE.

Purpose

• To determine whether the omega-3 has the influences of inflammatory biomarkers in SLE women patients.

Terms:

- EPA = Eicosapentaenoic acid
- DHA = Docosahexaenoic acid
- CRP = C-reactive protein

Biomarkers

- Cytokines: IL-6 and IL-10
- Adipokines: Leptin and Adiponectin
- C-reactive protein
- Glucose
- Lipids

Hypothesis

Supplementation of omega-3 will cause reduction in the circulating levels of inflammatory biomarkers.

Methods

Participants:

- 18-60 yo female patients with SLE
- stable doses of medications for SLE treatment
- BMI: 28.4 kg/m^2

Study duration: 12 weeks

- Visits: Baseline (To), Week 12 (T1)
- Avoided omega-3-rich foods

Study group (n = 22)

• 2 tablets / day of omega-3 fatty acids (540 mg EPA, 100 mg DHA)

Control group (n = 27)

• received nothing (no placebo)

Outcome Variables

 Median variations (IQR), between groups, of serum cytokines, adipokines, CRP, biomarkers

Results

- There was a statistically significant difference in CRP levels between the omega-3 group and the control group.
 - Decrease in the omega-3 group and increase in the control group
- IL-6, IL-10, leptin, and adiponectin did not show significant changes after 12-week treatment in either the omega-3 group or the control group.
- The concentrations of fasting blood glucose, total cholesterol, and LDL-cholesterol showed a statistically significant increase in the omega-3 group.
- LDL cholesterol significantly increased in the control group.

Variable	Omega 3 group N=22			Control group N=27		
	T0 Median (IQR)	T1 Median (IQR)	pª	T0 Median (IQR)	T1 Median (IQR)	p
IL-6 (pg/mL) ^b	0.57 (0.40-2.90)	1.10 (0.60–2.80)	0.821	1.09 (0.52-1.98)	0.88 (0.33-2.08)	0.94
IL-10 (pg/mL)b	19.05 (9.88-40.87)	29.90 (9.80-56.30)	0.363	21.41 (6.72–51.64)	26.08 (11.38-47.54)	0.33
Leptin (ng/mL)	80.03 (63.21-129.40)	93.20 (54.80-153.40)	0.506	58.12 (36.65-109.20)	77.20 (50.00-103.00)	0.41
Adiponectin (μg/mL)	42.30 (24.88-58.01)	44.9 (23.90-57.20)	0.465	40.08 (27.69-59.47)	44.50 (20.00-59.00)	0.46
Glucose (mg/dL)	77.5 (75.2–82.8)	83.0 (75.0-87.0)	0.043	78.0 (71.0–86.0)	77.5 (72.2–85.0)	0.35
Cholesterol (mg/dL)	168.0 (151.0-194.0)	188.0 (162.0-214.5)	0.012	182.0 (155.5-192.2)	176.0 (152.0-199.8)	0.06
LDL-c (mg/dL)	95.0 (80.0-116.0)	115.5 (90.0-129.2)	0.003	100.0 (84.5-111.8)	98.0 (76.0-125.0)	0.01
HDL-c (mg/dL)	52.0 (38.0-57.0)	53.0 (47.0-67.0)	0.537	53.0 (37.8-63.2)	53.5 (45.5-59.0)	0.85
Triglycerides (mg/dL)	88.0 (64.0-124.0)	70.0 (57.0–98.5)	0.520	79.5 (59.5–114.0)	87.0 (63.2-128.0)	0.65
CRP (mg/dL)	5.0 (4.9-8.1)	4.9 (4.9–7.2)	0.230	6.4 (4.9-11.6)	5.0 (4.9-11.6)	0.00

- IL, interleukin; CRP, C-reactive protein.
- ^a Nonparametric paired Wilcoxon.
- ^b IL-6, Omega 3 Group n = 21; control group n = 26; IL-10, Omega 3 Group n = 14; control group n = 21.

Fig. 2 – Box-plot of median (range) of C-reactive protein levels variations (ΔV) between T0 and T1 in treatment and control groups.

Discussion

- After 12 weeks, there was no statistically significant difference in the following biomarkers: IL-6, IL-10, leptin, adiponectin, glucose, and lipid between the omega-3 group and control group. Only the CRP had a significant difference between the omega-3 groups and control groups.
- Overall, the omega-3 supplement doesn't influence female patients who have SLE.

Limitations:

- 1. All participants were female patients
- 2. It's a pilot study
- 3. Diversity (Brazil)
- 4. Duration of the study

Questions:

- 1. Will safely increasing the dosage of omega-3 fatty acids lead to any statistically significant difference in results?
- 2. How can an increase in the diversity of SLE participants (i.e. gender, ethnicities, etc.) affect the biomarkers?
- 3. If the participants were allowed to consume omega-3 foods along with the treatment, how would that affect the results?